Homogenization of random parabolic operators. Diffusion approximation
نویسندگان
چکیده
The paper deals with homogenization of divergence form second order parabolic operators whose coefficients are periodic in spatial variables and random stationary in time. Under proper mixing assumptions, we study the limit behaviour of the normalized difference between solutions of the original and the homogenized problems. The asymptotic behaviour of this difference depends crucially on the ratio between spatial and temporal scaling factors. Here we study the case of self-similar parabolic diffusion scaling.
منابع مشابه
Homogenization of Nonlinear Random Parabolic Operators
We consider the homogenization of nonlinear random parabolic operators. Depending on the ratio between time and spatial scales different homogenization regimes are studied and the homogenization procedure is carried out. The parameter dependent auxiliary problem is investigated and used in the construction of the homogenized operator.
متن کاملStochastic homogenization of quasilinear PDEs with a spatial degeneracy
We investigate stochastic homogenization for some degenerate quasilinear parabolic PDEs. The underlying nonlinear operator degenerates along the space variable, uniformly in the nonlinear term: the degeneracy points correspond to the degeneracy points of a reference diffusion operator on the random medium. Assuming that this reference diffusion operator is ergodic, we can prove the homogenizati...
متن کاملHomogenization of locally stationary diffusions with possibly degenerate diffusion matrix
This paper deals with homogenization of second order divergence form parabolic operators with locally stationary coefficients. Roughly speaking, locally stationary coefficients have two evolution scales: both an almost constant microscopic one and a smoothly varying macroscopic one. The homogenization procedure aims to give a macroscopic approximation that takes into account the microscopic het...
متن کاملNumerical Homogenization of Nonlinear Random Parabolic Operators
In this paper we study the numerical homogenization of nonlinear random parabolic equations. This procedure is developed within a finite element framework. A careful choice of multiscale finite element bases and the global formulation of the problem on the coarse grid allow us to prove the convergence of the numerical method to the homogenized solution of the equation. The relation of the propo...
متن کاملConvergence in L space for the homogenization problems of elliptic and parabolic equations in the plane
We study the convergence rate of an asymptotic expansion for the elliptic and parabolic operators with rapidly oscillating coefficients. First we propose homogenized expansions which are convolution forms of Green function and given force term of elliptic equation. Then, using local Lp-theory, the growth rate of the perturbation of Green function is found. From the representation of elliptic so...
متن کامل